博客
关于我
P5367 【模板】康托展开
阅读量:229 次
发布时间:2019-02-28

本文共 996 字,大约阅读时间需要 3 分钟。

题目描述

求1\sim N1∼N的一个给定全排列在所有1\sim N1∼N全排列中的排名。结果对998244353998244353取模。

输入格式

第一行一个正整数NN。

第二行NN个正整数,表示1\sim N1∼N的一种全排列。

输出格式

一行一个非负整数,表示答案对998244353998244353取模的值。

输入输出样例

输入 #1 复制
3
2 1 3
输出 #1 复制
3
输入 #2 复制
4
1 2 4 3
输出 #2 复制
2
说明/提示
对于10%10%数据,1\le N\le 101≤N≤10。

对于50%50%数据,1\le N\le 50001≤N≤5000。

对于100%100%数据,1\le N\le 10000001≤N≤1000000。

思路:用树状数组+康托展开(百度)

#include 
typedef long long ll;const ll mod = 998244353;ll a[1000005];ll b[1000005];ll c[1000005];int n;void init(int n){//pretreatment b[0] = 1; for(int i = 1;i <= n;i++){ b[i] = (b[i-1]*i)%mod; } return;}void update(int x,int k){ for(int i = x;i <= n;i += i&-i){ c[i] += k; }}ll query(int x){ ll ans = 0; for(int i = x;i > 0;i -= i&-i){ ans += c[i]; } return ans;}int main(){ ll ans = 0; scanf("%d",&n); init(n); for(int i = 1;i <= n;i++){ scanf("%lld",a+i); update(i,1); } for(int i = 1;i <= n;i++){ ll t = query(a[i])-1;//减去自己本身 ans = (ans+(t*b[n-i])%mod+mod)%mod; update(a[i],-1); } printf("%lld\n",ans+1); return 0;}

转载地址:http://piqp.baihongyu.com/

你可能感兴趣的文章
multi-angle cosine and sines
查看>>
Mysql Can't connect to MySQL server
查看>>
mysql case when 乱码_Mysql CASE WHEN 用法
查看>>
Multicast1
查看>>
MySQL Cluster 7.0.36 发布
查看>>
Multimodal Unsupervised Image-to-Image Translation多通道无监督图像翻译
查看>>
MySQL Cluster与MGR集群实战
查看>>
multipart/form-data与application/octet-stream的区别、application/x-www-form-urlencoded
查看>>
mysql cmake 报错,MySQL云服务器应用及cmake报错解决办法
查看>>
Multiple websites on single instance of IIS
查看>>
mysql CONCAT()函数拼接有NULL
查看>>
multiprocessing.Manager 嵌套共享对象不适用于队列
查看>>
multiprocessing.pool.map 和带有两个参数的函数
查看>>
MYSQL CONCAT函数
查看>>
multiprocessing.Pool:map_async 和 imap 有什么区别?
查看>>
MySQL Connector/Net 句柄泄露
查看>>
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>